yl7773永利

yl7773永利:任子良

2023年07月02日 12:28

1.个人简介

任子良,男,博士研究生,副教授,硕士研究生导师,2017年6月毕业于华南理工大学电子与信息学院电路与系统专业,先后在三星广州技术研究院、中国科学院深圳先进技术研究院、东莞理工学院从事技术研发、科学研究与教学科研等工作,2018年6月至2020年6月于中国科学院深圳先进技术研究院开展博士后工作。目前主要从事机器视觉、动作识别、行为理解预测和目标检测等方向的研究,在Human-centric Computing and Information Sciences、Science China-Technological Sciences、IEEE Transactions on Circuits and Systems for Video Technology、Neurocomputing等国内外学术期刊和国际学术会议发表学术论文四十余篇,申请和授权国家发明专利四十余项,主持广东省自然科学基金项目2项、东莞市科技特派员项目1项,作为核心成员/技术骨干参与科技部重点研发计划、国家自然科学基金、省市科学基金以及企业课题多项。

2.研究方向:机器视觉、动作识别与行为意图理解、目标检测等

3.办公室:8Ayl7773永利

4.E-mail:renzl@dgut.edu.cn

5.教育经历

(1)2014/09-2017/06,华南理工大学,电路与系统,博士

(2)2009/09-2012/06,华南理工大学,通信与信息系统,硕士

(3)2005/09-2009/06,许昌学院,电子信息工程,学士

6.工作经历

(1)2021/12-至今,东莞理工学院,计算机科学与技术学院,副教授

(2)2020/07-2021/11,中国科学院深圳先进技术研究院,助理研究员

(3)2018/06-2020/06,中国科学院深圳先进技术研究院,博士后

(4)2012/07-2013/06,广州三星通讯研究院,工程师

7.科研项目

[1] 粤莞联合基金-地区培育项目,基于人机协作关系表示的行为意图理解方法研究,2023年1月-2025年12月,30万,主持;

[2] 广东省自然科学基金-面上项目,基于多模态特征关系嵌入表示的动作序列识别与理解方法研究,2023年1月-2025年12月,10万,主持;

[3] 东莞市科技特派员项目,智慧园区复杂场景中目标检测与异常行为分析及预警系统研究,2022年9月-2023年8月,10万,主持;

[4] 国家自然科学基金联合项目,大范围复杂动态场景智能安保机器人关键技术,2020-01至2023-12,253万,结题,参与;

[5] 科技部重点研发计划,面向五金行业制造的国产机器人系统应用示范,2019-06至2022-05,1283万,结题,骨干成员。

8.学术论文

[1] Ziliang Ren, Qieshi Zhang, Qin Cheng, Zhenyu Xu, Shuai Yuan, Delin Luo*. Segment differential aggregation representation and supervised compensation learning of ConvNets for human action recognition, Science China-Technological Sciences, 67(1): 197-208, 2024.

[2] Huaigang Yang, Qieshi Zhang, Ziliang Ren*, Huaqiang Yuan*, and Fuyong Zhang. Contrastive Learning with Cross-Part Bidirectional Distillation for Self-supervised Skeleton-based Action Recognition, Human-centric Computing and Information Sciences, 2024.

[3] Miaomiao Jin, Ziliang Ren*, Wenhong Wei, Qian Chen, Ni An. Human Motion Prediction Based on Graph Convolutional Networks and Multilayer Perceptron, ICSMD, 2023.

[4] Huaigang Yang, Ziliang Ren*, Huaqiang Yuan, Qieshi Zhang, Wenhong Wei, Xiaoyu Hong. Multi-View Contrastive Self-supervised Triplet network for Skeleton-based Action Recognition, ICSMD, 2023, Best Student Paper.

[5] Huaigang Yang, Ziliang Ren*, Huaqiang Yuan, Zhenyu Xu and Jun Zhou. Contrastive self-supervised representation learning without negative samples for multimodal human action recognition, Frontiers in Neuroscience, 2023.

[6] Xiongjiang Xiao, Ziliang Ren*, Huan Li, Wenhong Wei, Zhiyong Yang, Huaide Yang. SlowFast Multimodality Compensation Fusion Swin Transformer Networks for RGB-D Action Recognition, Mathematics, 11(9): 2115, 2023.

[7] Li Luo, Ziliang Ren*, Yong Qin, Qieshi Zhang, Xiangyang Gao. Skeleton-Embedded Network for action recognition, RCAR, 2023.

[8] Ziliang Ren, Huaqiang Yuan, Wenhong Wei, Tiezhu Zhao, Qieshi Zhang*. Convolutional non-local spatial-temporal learning for multi-modality action recognition, Electronics Letters, 58(20): 765-767, 2022.

[9] Huaigang Yang, Ziliang Ren*, Huaqiang Yuan, Wenhong Wei, Qieshi Zhang and Zhaolong Zhang. Multi-scale and attention enhanced graph convolution network for skeleton-based violence action recognition, Frontiers in Neurorobotics, 2022.

[10] Xiongjiang Xiao, Ziliang Ren*, Wenhong Wei, Huan Li, Hua Tan. Shift Swin Transformer Multimodal Networks for Action Recognition in Videos, ICSMD, 2022.

[11] Jun Cheng, Ziliang Ren*, Qieshi Zhang, Xiangyang Gao, and Fusheng Hao. Cross-modality compensation convolutional neural networks for RGB-D action recognition, IEEE Transactions on Circuits and Systems for Video Technology, 32(3): 1498-1509, 2022.

[12] Ziliang Ren, Qieshi Zhang, Jun Cheng*, Fusheng Hao, Xiangyang Gao. Segment spatial-temporal representation and cooperative learning of Convolution Neural Networks for multimodal-based action recognition, Neurocomputing, 433: 142-153, 2021.

[13] Ziliang Ren, Qieshi Zhang, Xiangyang Gao, Pengyi Hao, Jun Cheng*. Multi-modality Learning for Human Action Recognition, Multimedia Tools and Application, 80: 16185-16203, 2021.

[14] Ziliang Ren, Qieshi Zhang, Piye Qiao, Maolong Niu, Xiangyang Gao, and Jun Cheng*. Joint learning of convolution neural networks for RGB-D-based human action recognition, Electronics Letters, 56(21): 1112-1115, 2020.

9.专利授权和申请

[1] 一种基于脉冲神经网络的人体动作识别方法,发明专利,CN202311680248.2

[2] 一种基于弱监督与长短期记忆网络的3D人体运动预测方法,发明专利,CN2023108 68509.7

[3] 基于知识蒸馏与多任务自监督学习的骨架行为识别方法,发明专利,CN202310512443.8.

[4] 一种定位方法、定位装置及存储介质,授权发明专利,CN202310475470.2.

[5] 动作序列识别和意图推断方法、装置、设备及存储介质, 发明专利,CN202310335615.9.

[6] 一种人体动作识别和意图理解方法、终端设备及存储介质,授权发明专利,CN202210675830.9.

[7] 一种动作检测方法、装置、终端设备和 存储介质,授权发明专利,ZL202110889116.5.

[8] 一种行为识别方法、装置及终端设备,授权发明专利,ZL201910718037.0.

[9] 光源控制电路及视觉检测仪,授权发明专利,ZL202111348689.3.

[10] 基于道路特征的车辆轨迹预测数据处理方法和装置,授权发明专利,ZL202111536333.2.

[11] 一种基于特征交互学习的动作识别方法及终端设备,授权发明专利,ZL202011078182.6.

[12] 一种汽车驾驶员数据采集系统和穿戴式辅助驾驶设备,授权发明专利,ZL201911 284080.7.

10.获奖情况

[1] 2022年深圳市科学技术奖(技术发明奖)二等奖,人体动作识别与交互技术及应用,排名5/6。

yl7773永利(中国)科技有限公司